

0957-4166(95)00049-6

Palladium-Catalyzed Asymmetric Allylic Sulfonylation

Holger Eichelmann and Hans-Joachim Gais*

Institut für Organische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen, Prof.-Pirlet Straße 1, 52056 Aachen, Germany

Abstract: The palladium-catalyzed asymmetric sulfonylation of allylic substrates rac-7a,b and rac-8a,b in the presence of the chiral phosphino-oxazoline ligand 3a gave the allylic sulfones 9a and 9b with ee-values of 59% and 88%, respectively, in high yield. In the presence of ligand ent-3b the enantiomeric allylic sulfones ent-9a and ent-9b were obtained with ee-values of 57% and 93% in high yield.

We have recently shown that chiral, non-racemic lithiosulfones, which are configurationally stable at low temperatures, are accessible by deprotonation/lithiation of the corresponding chiral, non-racemic sulfones. For the synthetic utilization of such chiral lithiosulfones a method for the asymmetric synthesis of sulfones via C-S bond formation would be desirable. In 1986 Hiroi et al. reported on the Pd-catalyzed asymmetric sulfonylation of allylic acetate 1a with sodium p-toluenesulfinate and $Pd(PPh_3)_4^3$ in the presence of the chiral bisphosphino ligand 2 which led to the isolation of the allylic sulfone (R)-(-)-4 with an ee-value of 88% in 73% yield (Scheme 1). 2a,b

Scheme 1

Me
$$X$$
 + NaSO₂Tol X + NaSO₂Tol X

However, besides 4 the isomeric sulfone 5 was isolated in 24% yield. Since the substitution of unsymmetrical allylic substrates such as 1 is faced with the regioselectivity problem a Pd-catalyzed asymmetric sulfonylation of racemic allylic substrates of the symmetrical type⁴ (Scheme 2) would be synthetically more attractive. In recent years a number of chiral phosphine ligands have been devised for the highly selective

asymmetric Pd-catalyzed substitution of allylic substrates with C- and N-nucleophiles. 5,6 The chiral phosphino-oxazoline ligands 3a,b developed by Helmchen et al., Pfaltz et al., and Williams et al. are especially interesting. 10

Here we report on the Pd-catalyzed asymmetric sulfonylation of allylic substrates of the symmetrical type in the presence of the Helmchen-Pfaltz-Williams ligands 3a and ent-3b. We began our investigations, however, with the allylic substrates 1a,b and by using 2 as ligand (Table 1).

Table 1. Palladium-Catalyzed Asymmetric Sulfonylation of the Allylic Substrates 1a,b.a

entry	substrate	equiv of Pd(PPh ₃) ₄	chiral ligand, equiv.	time (h)	yield (%) ^{b} of 4, 5 and 6 ^c	ee-value (%) ^d of 4 or ent-4 ^e
1	1a	0.15		6	99	0
2	1a	0.15	2 , 0.60	6	98	14 (–)
3	1a	0.01		22	75	0
4	1a	0.01	3a , 0.02	22	53	14 (+)
5	1a	0.01	ent- 3b , 0.02	22	51	17 (-)
6	1b	0.01	-	22	77	0
7	1b	0.01	2 , 0.60	22	70	15 (–)
8	1b	0.01	3a , 0.02	22	50	11 (+)
9	1b	0.01	ent- 3b , 0.02	22	47	21 (–)

^a 1a,b (0.5 mmole) were reacted with ToISO₂Na (1 mmole) in the presence of Pd(PPh₃)₄ and 2, 3a or *ent-3b* at room temperature in THF (5 mL). ^b After purification by flash-chromatography. ^c The ratio of 4:5:6, which was in all cases 73:24:3, was determined by ¹H NMR spectroscopy and by GC on DB5 column. ^d Determined by ¹H NMR spectroscopy in the presence of Eu(hfc)₃ (100 mol%) in CDCl₃ or by GC on a 2,3-di-O-pentyl-6-O-methyl-γ-cyclodextrin column. ^e In parenthesis, the sign of the optical rotation of the mixture of 4, 5 and 6 in ethanol is given.

Experiments with PPh₃ as ligand served to establish the reactivity of the allylic substrates and to secure the racemic allylic sulfones for analytical purposes (Table 1, entries 1, 3 and 6). The substitution of 1a,b in the presence of 2 under the conditions reported 2a,b gave a mixture of the allylic sulfones 4 and 5 besides the sulfinic ester 6 in a ratio of 73:24:3 (Table 1, entries 2 and 7). The sulfone 4, however, had an ee-value of only 14% (15%). The ee-determination was done by NMR spectroscopy in the presence of Eu(hfc)₃ taking the signal of the α -methyl group ($\Delta\Delta\delta=0.12$ ppm), and by GC analysis on a 2,3-di-O-pentyl-6-O-methyl- γ -cyclodextrin column with rac-4 as standard in both cases. Even by using the ligands 3a and ent-3b for this substitution the ee-values of ent-4 and 4 did not exceed 14% and 21%, respectively (Table 1, entries 4, 5, 8 and 9). It is interesting to note that with 2 as ligand the enantioselectivity of the Pd-catalyzed substitution of 1a with sodium p-toluenesulfinate is almost the same as with sodium dimethylmalonate.

Further studies were therefore conducted with rac-7a,b and rac-8a,b as allylic substrates and 3a as well as ent-3b as chiral ligands (Scheme 2). Here too experiments in the presence of PPh₃ were run to establish the reactivity and to obtain racemic samples as analytical standards (Table 2, entries 1, 5, 8 and 11). Reaction of dimethyl-substituted substrates rac-7a,b with sodium p-toluenesulfinate and Pd(PPh₃)₄ in the presence of 3a at room temperature in THF gave sulfone $9a^{1/2a}$ and sulfinic acid ester $10a^{1/2b}$ in ratios varying from 10:1 to 15:1 as an inseparable mixture (Table 2, entries 2 and 6). The sulfone 9a had ee-values ranging from 52 to 59%. With ent-3b as ligand the sulfone ent-9a was obtained with ee-values in the range of 50 to 57% (Table 2, entries 4 and 7).

Scheme 2

$$R + NaSO_2ToI \xrightarrow{Pd(PPh_3)_4, \ 3a \ (or \ ent-3b)} R + R R R R$$

$$THF, RT SO_2ToI The rac-7a,b \ (R = Me, X = OAc,CI)$$

$$R = R + R R$$

$$SO_2ToI = R$$

entry	substrate	chiral Ligand	time (h)	yield (%) ^b of 9 or <i>ent-</i> 9 and 10	ratio of 9:10°	ee-value (%) ^d of 9 or ent-9 ^e
1	7 a	_	22	52	5:1	0
2	7a	3a	22	42	15:1	59 (-)
3 <i>f</i>	7a	3a	72	83	10:1	55 (-)
4	7a	ent-3b	21	40	12 : 1	57 (+)
5	7b	_	20	59	8:1	0
6	7b	3a	20	55	15:1	52 (-)
7	7b	ent-3b	19	51	10 : 1	50 (+)
8	8a		4	98	100 : 0	0
9	8a	3a	4	88	100 : 0	78 (–)
10	8a	ent-3b	4	7 7	100 : 0	91 (+)
11	8b	_	4	93	100 : 0	0
12	8b	3a	4	91	100 : 0	86 (-)
13 <i>8</i>	8b	3a	4	97	100 : 0	88 (-)
14	8b	ent-3b	4	87	100 : 0	93 (+)

 \overline{a} 7a,b and 8a,b (0.5 mmole) were reacted with TolSO₂Na (2 equiv) in the presence of Pd(PPh₃)₄ (0.01 equiv) and 3a or ent-3b (0.022 equiv) at room temperature in THF (5 mL). \overline{b} After purification by flash-chromatography. \overline{c} Determined by \overline{b} H NMR spectroscopy and by chiral GC on a 2,3-di-O-pentyl-6-O-methyl-γ-cyclodextrin column. \overline{d} Determined by \overline{b} H NMR spectroscopy in the presence of Eu(hfc)₃ (140 mol%) (9a: $\Delta\Delta\delta(\alpha$ -Me) = 0.09 ppm; 9b: $\Delta\Delta\delta(\gamma$ -H) = 0.06 ppm) or by GC on a 2,3-di-O-pentyl-6-O-methyl-γ-cyclodextrin column (only 9a). \overline{c} In parenthesis, the sign of the optical rotation in ethanol is given. \overline{f} 10 mmole of 7a, 2 equiv of TolSO₂Na, 0.05 equiv of Pd(PPh₃)₄ and 0.11 equiv of 3a. \overline{g} 10 mmole of 8b, 2 equiv of TolSO₂Na, 0.005 equiv of Pd(PPh₃)₄ and 0.011 equiv of 3a.

Under similar reaction conditions substitution of the diphenyl-substituted substrates rac-8a,b gave in the presence of 3a the sulfone $9b^{13c}$ with ee-values ranging from 78% to 88%. Here, formation of the sulfinic ester 10b could not be detected (Table 2, entries 9 and 12). By using ent-3b as ligand the sulfone ent-9b was obtained with somewhat higher ee-values in the range of 91% to 93% (Table 2, entries 11 and 14. Similar enantioselectivities were found in the Pd-catalyzed substitution of rac-7 and rac-8 with C- and N-nucleophiles in the presence of 3a or ent-3b. 5-10 For the determination of the absolute configuration (-)-9b was reduced with diimine l^4 to (+)-1-(1,3-diphenylpropyl)-p-toluenesulfone l^{2d} to whom we assign the R-configuration since the absolute configuration of (+)-1-phenylethyl phenyl sulfone as a structurally closely related sulfone is known to be R^{15} This leads to the assignment of the R-configuration to the allylic sulfone (-)-9b. Thus Pd-catalyzed substitutions of rac-8a with C-, N- and S-nucleophiles in the presence of 3a as chiral ligand proceed with the same sense and a similar degree of asymmetric induction. A mechanistic scheme for the rationalization of the sense of asymmetric induction in the substitution of 8a with nucleophiles in the presence of 3a based on X-ray crystal structure analysis and NMR spectroscopic studies has been proposed by Helmchen et al. 76,16 The syntheses of the sulfones 9a,b were run on a 10 mmol scale with similar results (Table 2, entry 3 and 13). The reaction of rac-8b in the presence of 0.005 equiv of Pd(PPh₃)₄ and 0.011 equiv of 3 took 4 h for completion and gave (-)-9b in 97 % yield with 88% ee. Recrystallisation from diethyl ether afforded enantiomerically pure (-)-9b.

In summary, with ligands 3a and ent-3b the Pd-catalyzed allylic substitution of racemic diphenyl-substituted allylic substrates gives a synthetically useful access to chiral allylic sulfones. We are currently studying other racemic dialkyl-substituted allylic substrates as well as other sulfinates.

Acknowledgement. We are indebted to Prof. Dr. G. Helmchen for a sample of *ent-3b* and for an experimental procedure for the synthesis of 3a as well as for valuable suggestions. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References and Notes

- 1. (a) Gais, H.-J.; Hellmann, G.; Günther, H.; Lopez, F.; Lindner, H. J.; Braun, S. Angew. Chem 1989, 101, 1061; Angew. Chem., Int. Ed. Engl. 1989, 28, 1025. (b) Gais, H.-J.; Hellmann, G.; Lindner, H. J. Angew. Chem. 1990. 102, 96; Angew. Chem., Int. Ed. Engl. 1990, 29, 100. (c) Gais, H.-J.; Müller, J.; Vollhardt, J.; Lindner, H. J. J. Am. Chem. Soc. 1991, 113, 4002.
- (a) Hiroi, K.; Makino, K. Chem. Lett. 1986, 617. (b) Hiroi, K.; Kitayama, R.; Sato, S. Chem. Pharm. Bull. 1984, 32, 2628. (c) Hiroi, K.; Makino, K. Chem. Pharm. Bull. 1988, 36, 1749. (d) Hiroi, K.; Kitayama, R., Sato, S. J. Chem. Soc., Chem. Commun. 1983, 1470. (e) Hiroi, K., Kitayama, R., Sato, S. J. Chem. Soc., Chem. Commun. 1984, 303, (f) Hiroi, K.; Kurihara, Y. J. Chem. Soc., Chem. Commun. 1989, 1778. (g) Hiroi, K.; Yamamoto, M.; Kurihara, Y.; Yonezawa, H. Tetrahedron Lett. 1990, 31, 2619
- 3. For Pd-catalyzed allylic sulfonylations in the presence of achiral ligands, see: (a) Julia, M.; Nel, M.; Saussine, L. J. Organometal. Chem. 1979, 181, C17. (b) Tamaru, Y.; Yamada, Y.; Kagotani, M.; Ochiai, H.; Nakaijo, E.; Suzuki, R.; Yoshida, Z. J. Org. Chem. 1983, 48, 4669. (c) Trost, B. M.; Schmuff, N. R. J. Am. Chem. Soc. 1985, 107, 396.
- 4. The terms symmetrical and unsymmetrical refer to the constitution of the allylic groups in the intermediate π -allyl-palladium complexes.
- 5. Reviews: (a) Hayashi, T. In Catalytic Asymmetric Synthesis, Ojima, I., Ed.; VCH Publishers: New York, 1993, pp. 325-365. (b) Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089. (c) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
- 6. Kubota, H.; Koga, K. Tetrahedron Lett. 1994, 35, 6689.
- 7. (a) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769. (b) Sprinz, J.; Kiefer, M.; Helmchen, G.; Reggelin, M.; Huttner, G.; Walter, O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 1523. (c) Sennhenn, P.; Gabler, B.; Helmchen, G. Tetrahedron Lett. 1994, 35, 8595.
- von Matt, P.; Pfaltz, A. Angew. Chem. 1993, 105, 614; Angew. Chem., Int. Ed. Engl. 1993, 32, 566.
- (a) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1993, 34, 3149. (b) Allen, J. V.; Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron 1994, 50, 799.
- von Matt, P.; Loiseleur, O.; Koch, G.; Pfaltz, A.; Lefeber, C.; Feucht, F.; Helmchen, G. Tetrahedron: Asymmetry 1994, 5, 573.
- Trost, B. M.; Dietsche, T. J. J. Am. Chem. Soc. 1973, 95, 8200. 11.
- (a) 9a: ${}^{1}H$ NMR (300 MHz, CDCl₃) δ 1.39 (d, J = 7.1 Hz, 3H), 1.66 (d, J = 6.1 Hz, 3H), 2.45 (s, 3H), 3.62 (quint, J = 7.1 Hz, 1H), 5.35-5.55 (m, 2H), 7.30-7.37 (2H), 7.67-7.78 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 13.6 (CH₃), 18.1 (CH₃), 21.6 (CH₃), 63.7 (CH), 124.0 (CH), 129.27 (CH), 129.33 (CH), 133.4 (CH), 134.1 (C), 144.4 (C). (b) 10a: ¹H NMR (300 MHz, CDCl₃) 8 1.32 (d, J = 6.8 Hz, 3H), 1.44 (d, J = 7.1 Hz, 3H), 2.45 (s, 3H), 3.98 (m, 1H), 5.23 (m, 1H), 5.68 (m, 1H), 7.30-7.37 8 (m, 2H), 7.67-7.78 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 14.0 (CH₃), 18.5 (CH₃), 21.6 (CH₃), 58.6 (CH), 120.5 (CH), 129.3 (CH), 129.4 (CH), 31.7 (CH), 144.4 (C). (c) 9b: ¹H NMR (300 MHz, CDCl₃) δ 2.39 (s, 3H), 4.81 (dd, J = 0.67, J = 7.38 Hz, 1H), 6.52 (dd, J = 0.67, J = 15.44 Hz, 1H), 6.59 (dd, J = 15.44, J = 7.38 Hz, 1H), 7.20 (m, 2H), 7.24-7.38 (m, 10H), 7.53 (m, 2H), ^{13}C NMR (75.5 MHz, CDCl₃) δ 21.6 (CH₃), 75.4 (CH), 120.3 (CH), 126.8 (CH), 128.4 (CH), 128.6 (CH), 128.7 (CH), 128.9 (CH), 129.3 (CH), 129.4 (CH), 129.7 (CH), 132.5 (C), 134.5 (C), 136.0 (C), 138.0 (CH), 144.6 (C); $[\alpha]_{D}^{20}$ -6.0 (c 0.17, ethanol) (>98% ee).(d) (+)-1-(1,3-Diphenylpropyl)-p-toluenesulfone: ¹H NMR (300 MHz, CDCl₃) δ 2.37 (s, 3H), 2.40-2.52 (m, 2H), 2.56-2.80 (m, 2H), 3.99 (m, 1H), 7.01-7.37 (m, 14H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.6 (CH₃), 28.9 (CH₂), 32.5 (CH₂), 70.6 (CH), 126.3 (CH), 128.4 (CH), 128.48 (CH), 128.52 (CH), 128.8 (CH), 129.0 (CH), 129.2 (CH), 130.0 (CH), 132.1 (C), 134.3 (C), 140.0 (C), 144.3 (C), $[\alpha]_D^{20}$ +18.5 (c 2.3, ethanol). According to ¹H NMR spectroscopy and GC on a 2,3-di-O-pentyl-6-O-methyl- γ -cyclodextrin column
- 10a was a 1:1 mixture of diastereomers which were both racemic.
- Pasto, D. J.; Taylor, R. T. Organic Reactions 1991, 40, 103.
- (a) Corey, E. J.; Lowrey, T. H. Tetrahedron Lett. 1965, 803. (b) Modena, G.; Quintily, U.; Scorrano, G. J. Am. Chem. Soc. 1972, 94, 202.
- See also: Brown, J. M.; Hulmes, D. I.; Guiry, P. J. Tetrahedron 1994, 50, 4493.